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Abstract. We have studied the viscosity of dilute suspensions of strongly interacting 
monodispersed colloidal particles. Theoretically we find that the viscosity can be calculated 
from the infinite frequency shear modulus times a Maxwellian relaxation time G-T, where 
G“ is obtained from the interactions and T depends on the interparticle spacing but is 
independent of the interactions over the physically interesting range. Experimentally we 
find that this relation holds quantitatively when G is identified with the shear modulus 
extrapolated from measurements on  colloidal crystals, and when T is taken as a ‘Lindemann 
time’-the time for a particle to diffuse - $j of the distance to a near neighbour-a similar 
value results from the calculations. Thus for the Brownian dynamics of colloids it is 
possible to completely determine the viscosity of the melted state from measurements of 
the solid. 

During the past decade there has been considerable progress and interest in understand- 
ing the dynamics of interacting particles in suspension (Batchelor 1972, 1976, 1983, 
Brown et a1 1975, Pusey and Tough 1984, Ackerson 1976, Hess and Klein 1983, Klein 
and Hess 1983). An ideal system for the investigation of such phenomena, both 
theoretically and experimentally, is that of monodispersed lattices (Schaeff er and Berne 
1974, Goodwin and Khider 1976, Schaeffer 1977, Ackerson and Clark 1980, Pieranski 
1983, Gruner and Lehmann 1979, 1982, Les Houches 1985) composed of charged 
polymer spheres. For weak electrostatic interactions hydrodynamic forces dominate 
and for small volume fraction q5 the linear corrections have been successfully calculated. 
In the opposite limit of strong electrostatic interactions (but small volume fraction), 
the hydrodynamic forces play a less important role and one might expect the system 
to approximate a simple fluid, i.e. without a solvent. However, the Brownian as opposed 
to ballistic dynamics still plays a crucial role which in the present case leads to both a 
simplification of the calculations of the viscosity and a physically intuitive way of 
understanding the results. 

The system under consideration consists of charged polystyrene spheres of diameter 
-0.1 pm, q5 - 1%, effective charge Z* - 300e interacting via a screened Coulomb 
(Alexander et a1 1984, Lindsay and Chaikin 1983, 1985) potential. Such systems have 
been well characterised and have easily controllable interactions adjusted by indepen- 
dently varying the volume fraction 4, or the concentration of electrolyte which gives 
the range and strength of the interaction potential. They are known to form colloidal 
crystals which ‘melt’ on adding electrolyte and yield a liquid phase with a structure 
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factor S( K )  with liquid-like shape (Schaeffer and Beme 1974, Schaeffer 1977, Ackerson 
and Clark 1980, Gruner and Lehmann 1979, 1982). The amplitude of the structures 
in S ( K )  range from a maximum of -3 (the Hansen-Verlet criterion) near melting 
(Hansen and Verlet 1969) to essentially flat ( S (  K )  = 1) for high electrolyte concentration 
(Hess and Klein 1983, Klein and Hess 1983). The viscosity of the liquid phase similarly 
varies from several times the solvent viscosity T~ near melting to vo( 1 + 2.544 (Lindsay 
and Chaikin 1985). 

By experimentally studying a variety of samples as a function of particle and 
electrolyte concentration in both the solid and liquid phases, we were able to show 
that the shear modulus which characterises the instantaneous response to a strain in 
the liquid is essentially the extrapolated shear modulus of the solid, and that for fixed 
particle concentration this determines the viscosity of the liquid. This implies that the 
time to relax the stress in the liquid is independent of the interaction strength between 
the particles. The relaxation time experimentally determined is the free diffusion time 
for an independent particle to go - & of the nearest-neighbour distance as confirmed 
by varying the particle density. Theoretically this result is confirmed by a direct 
calculation of the relaxation time using a mode coupling scheme. As the strength of 
interaction between particles of fixed density is varied, S( K )  varies dramatically. 
However, the relaxation time is virtually unchanged in going from small interactions 
with S( K )  - 1 to just above melting. Quantitatively the time is the same as that found 
experimentally. Phenomenologically this introduces a new meaning to the Lindemann 
melting criterion. Traditionally this suggests that a material melts when the RMS 

displacement of a particle from its mean position (as determined by the temperature 
and the interactions) is -0.1 of the interparticle spacing. In the present context it 
suggests that the time for a material to 'melt' locally is given by the same criterion. 

The interaction between the charged colloidal spheres is well described by a screened 
Coulomb or Yukawa potential of the form 

where Z* is the effective charge, E is the dielectric constant of the solvent and nions is 
the total number of ions in solution including the countercharge to Z* and any added 
electrolyte. In our experiments we determined Z* by a measurement of the shear 
modulus of a colloidal crystal with no added electrolyte. The experiment has been 
described in detail elsewhere (Lindsay and Chaikin 1983,1985). It consists of observing 
the shear elastic wave resonances of the colloidal crystal in a cylindrical geometry. 
The form of the potential is then tested by measuring the shear modulus as HC1 is 
added to vary k There is excellent experimental agreement with equation (1) up to 
the point at which a first-order melting transition is observed. The extrapolation of 
the shear modulus G is then accomplished either by using the value of Z* in equation 
( l ) ,  or directly fitting the experimental data to a smooth function against cHC, and 
extending this curve past the melting point. The results are equivalent to within 
experimental error. 

The viscosity in the liquid state has been determined using several viscometers 
(Lindsay and Chaikin 1985). However, for the more concentrated samples, 0.01 < 4 < 
0.05, the viscosity just past the melting curve is slightly non-Newtonian and in this 
case we have used a Zimm viscometer (Mitaku et a1 1978) which directly measures 
the strain rate for an applied stress in a small gap Couette geometry. The small gap 
ensures constant stress and data are only presented for the linear regime at low stress 



Viscosity and shear modulus of colloids 2585 

If the electrostatic interactions dominate the hydrodynamic interactions, as is the 
case for most of this study, then the measured viscosity can be separated into two parts: 

77" 770+771+0(4) (2) 
where q0 is the viscosity of the solvent (water in our experiments), r ] ,  is the additional 
viscosity due to the interactions of the particles and the third term represents the 
hydrodynamic corrections which are of order 4 for dilute suspensions. Equation (2) 
can be derived from a two-fluid model in which the colloidal particles are imagined 
to be a separate fluid interacting with the potential given in equation ( 1 )  and giving 
rise to the viscosity vl, superposed on the solvent. A more rigorous treatment leading 
to equation ( 2 )  can be obtained from a generalised Fokker-Planck equation (Klein 
and Hess 1983, 1985). 

In figures 1 and 2 we plot the measured viscosity against the extrapolated shear 
modulus for two samples with different particle density. The quantity which is being 
varied is cHcI. It is clear from these figures that the viscosity varies linearly with the 
extrapolated shear modulus. Moreover, in figure 2 we see that the hydrodynamic 
correction to equation (2) gives the expected 2.5+, as the strength of the interactions 
goes to zero. 

In viscoelastic theory it is conventional to write the viscosity as 

77 3 GET (3) 
where G" is the infinite frequency or instantaneous shear modulus and 7 is the 
Maxwellian relaxation time, the time for the fluid to relax a stress (Landau and Lifshitz 
1970). Associating G" with the extrapolated shear modulus we are led to the conclusion 
that T is independent of the strength of the interaction and moreover is numerically 
equal to ( 0 . 1 d ) 2 / D o  where d is the mean interparticle separation and Do= kBT/6.rrqoa 
is the diffusion constant of the non-interacting sphere of radius a in the solvent. 

0.9 
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Figure 1. Viscosity of a sample of 0.109 Fm spheres and 2% volume fraction plotted against 
the calculated shear modulus using an effective charge of 305. The horizontal line is the 
viscosity of water given for reference. 
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Figure 2. Viscosity of a sample of 0.109 pm spheres and 5 %  volume fraction plotted against 
the calculated shear modulus. The horizontal line is the Einstein value for non-interacting 
spheres. 0, colloid; horizontal line, ( 1  + 2 . 5 ) q 0 .  

The theoretical treatment we will use is based on the Fokker-Planck description 
of the colloidal fluid elaborated in more detail in Batchelor (1972) and Klein and Hess 
(1983) and successfully applied to the cooperative and self-diffusion coefficients of 
colloidal liquids previously. Using a mode coupling approximation, the wavevector 
and time dependent viscosity function may be written in terms of the dynamic structure 
factor S ( k ,  t )  and the total correlation function as 

where 

and h ( k ) = ( S ( k ) - l ) / c .  
S ( k ,  t )  in equation (4) is replaced by its mean-field expression 

For the static structure factor we take the Hansen and Hayter form (Hansen and Hayter 
1982) plus a correction for the long wavelength behaviour. The stress relaxation at 
zero wavevector as a function of time is seen from the behaviour of 
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Figure 3. Normalised dynamic viscosity against reduced time I' = Dot /d2  for several volume 
fractions (theory). Curve A is for 4 = and curve C for curve B for 4 = 1.5 x 
4 =4.5 x 

As a function of the reduced time t ' =  D o t / d 2 =  t /  T, figure 3 shows that the normalised 
dynamic viscosity is numerically identical for This spans the 
interaction regime (for the particular Z * )  from an essentially flat S ( K )  to freezing. 
The time T = d 2 / D o  is the time a non-interacting particle would need to diffuse a 
distance d = 2 ( 3 / 4 ~ c ) " ~ ,  which is the mean interparticle separation at concentration 
c. The only concentration dependence of the stress relaxation is contained in the 
concentration dependence of t' and therefore of d. 

The contribution to the static shear viscosity due to interactions among the 
macroparticles is 

< 4 < 4.5 x 

Therefore 

T~ = G"- d t f (  t). 
Do d 2  I" 0 

The integral is found to be approximately equal to lo-*. Therefore 

q l / G m = ( d / 1 0 ) 2 / D o =  t ,  
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where t ,  is the time which a particle needs to travel one-tenth of the distance to its 
nearest neighbour. 

Although our mode coupling result for ~ ( 0 ,  t )  deviates somewhat from a simple 
exponential, a simpler determination of this characteristic time is to approximate ~ ( 0 ,  t )  
by ~ ( 0 ,  t )  = G“ exp(-t/tA). Defining the transition from elastic to viscous behaviour 
by that time at which ~ ( 0 ,  t )  has decreased to l / e  of its initial value, one obtains 
t ;  = ( ~ f / 7 ) ~ / D , .  Thus the suspension behaves elastically on a timescale which is given 
by the time the particle needs to travel one-seventh of the nearest-neighbour separation. 
More rigorously, the dynamical equations of Batchelor (1972, 1976, 1983) show that 
for short times the equation of motion for the transverse current fluctuations is that 
of a damped harmonic oscillator with a restoring force characterised by T (  k, 0) = G“, 
the wavevector dependent high frequency elastic constant. 

Physically for short times a particle is trapped in a glasslike cage of near neighbours 
which elastically resists shear. The ‘melting’ time for the local structure is the time in 
which the stress relaxes and this corresponds to the time required for the particles to 
diffuse a ‘Lindemann’ distance. What seems to be somewhat surprising is that the 
diffusion is essentially not retarded by the interactions with neighbouring particles 
since it is known that the self-diffusion of colloidal particles is strongly interaction 
dependent. However, theoretical calculations as well as molecular dynamic simulations 
indicate that a colloidal particle in such a cage has a mean square displacement W (  r )  
which for short times and distances is governed by Do and evolves at large times and 
displacements to a reduced value, D,, largely governed by the difficulty encountered 
in leaving its cage. Using a ‘time dependent’ self-diffusion constant D,( t )  = W (  t ) /  t, 
it is found that the characteristic time for reaching its asymptotic value D, is much 
larger than r,; therefore, it is more appropriate to connect the characteristic distance 
for the crossover from Do to D, to the cage size or mean particle separation d. For 
solids the particle diffusion begins to slow down for distances less than O.ld, whereas 
for liquids the crossover is closer to d itself. Thus, in a liquid Do correctly describes 
the Brownian motion for the short distances given by the Lindemann criterion. For a 
simple liquid the only Brownian dynamics is given by the interactions of the particles 
themselves, and the diffusion coefficient is clearly related to the interaction strength. 

It is, however, interesting to note that a fit of computer simulations for argon 
(Levesque et a1 1973) as a Lennard-Jones fluid near its triple point to a single exponential 
dynamic viscosity function gives a shear stress relaxation time T, = 3.6 x s. During 
this time an argon atom in free flight with thermal velocity ( k T / M ) ’ ”  spans about 
one-seventh of the interparticle distance, which is a similar value to the one obtained 
for the colloidal fluid. This is quite remarkable, since G“ in the two systems differs 
by roughly ten orders of magnitude, whereas the values of T~ are rather similar. This 
might suggest further investigations to see whether the stress relaxation time is often 
given by the time required for displacement by a small fraction of the interparticle 
spacing. 

In conclusion, we have demonstrated both theoretically and experimentally that 
the relation 7 = GT has a quantitative and physically intuitive applicability in the case 
of colloidal liquids. This allows for the direct prediction of the viscosity of the liquid 
phase in terms of properties measured entirely in the solid phase (or in terms of the 
charge per sphere), a calculation which is not presently possible for any other materials 
of which we know. We have also introduced a new use of the phenomenological 
Lindemann criterion in which the local ‘melting’ time or stress relaxation time is given 
by the time required for a particle to diffuse a Lindemann distance. It is interesting 
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to note that this criterion ‘works’ for systems which have long range or rather soft 
potentials in contrast to simple liquids and solids which are characterised by short 
range and rather hard potentials. 
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